Modélisation étendue

From Cybagora
Revision as of 14:29, 28 June 2014 by Sysop (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

VII. NOOGITIEL

société(13)

organisation (12)

personne (11)

VI. INTELLITION

interface (10)

interprocessus (9)

virtualisation (8)

V. COMMUNICATIONS

services (APPLICATION LAYER) (7)

The application layer serves as the window for users and application processes to access network services. This layer contains a variety of commonly needed functions:

  • Resource sharing and device redirection
  • Remote file access
  • Remote printer access
  • Inter-process communication
  • Network management
  • Directory services
  • Electronic messaging (such as mail)
  • Network virtual terminals

Couche application

C'est dans la couche application que se situent la plupart des programmes réseau.

Ces programmes et les protocoles qu'ils utilisent incluent HTTP (World Wide Web), FTP (transfert de fichiers), SMTP (messagerie), SSH (connexion à distance sécurisée), DNS (recherche de correspondance entre noms et adresses IP) et beaucoup d'autres.

Les applications fonctionnent généralement au-dessus de TCP ou d'UDP, et sont souvent associées à un port bien connu. Exemples :

  • HTTP port TCP 80 ;
  • SSH port TCP 22 ;
  • DNS port UDP 53 (TCP 53 pour les transferts de zones et les requêtes supérieures à 512 octets) ;
  • RIP port UDP 520 ;
  • FTP port TCP 21 ;

Ces ports ont été assignés par l'Internet Assigned Numbers Authority (IANA).

Sous UNIX, on trouve un fichier texte servant à faire les correspondances port↔protocole : /etc/services.

Sous Windows, il se situe dans %SystemRoot%\System32\drivers\etc. Il se nomme services, on peut le lire avec le Bloc-notes.

Auth, BOOTP, BOOTPS, DHCP, Echo, Finger, FTP, Gopher, HTTPS, IRC, IMAP, IMAPS, Kerberos, QOTD, Netbios, NNTP, NFS, POP, POPS, RTSP, NTP, SFTP, SMTP, SNMP, SSH, Telnet, TFTP, WAIS, Webster, Whois, XDMCP.

présentation (6)

The presentation layer formats the data to be presented to the application layer. It can be viewed as the translator for the network. This layer may translate data from a format used by the application layer into a common format at the sending station, then translate the common format to a format known to the application layer at the receiving station.

The presentation layer provides:

  • Character code translation: for example, ASCII to EBCDIC.
  • Data conversion: bit order, CR-CR/LF, integer-floating point, and so on.
  • Data compression: reduces the number of bits that need to be transmitted on the network.
  • Data encryption: encrypt data for security purposes. For example, password encryption.

session (5)

The session layer allows session establishment between processes running on different stations. It provides:

  • Session establishment, maintenance and termination: allows two application processes on different machines to establish, use and terminate a connection, called a session.
  • Session support: performs the functions that allow these processes to communicate over the network, performing security, name recognition, logging, and so on.

IV. TRANSPORT

transport (4)

The transport layer ensures that messages are delivered error-free, in sequence, and with no losses or duplications. It relieves the higher layer protocols from any concern with the transfer of data between them and their peers.

The size and complexity of a transport protocol depends on the type of service it can get from the network layer. For a reliable network layer with virtual circuit capability, a minimal transport layer is required. If the network layer is unreliable and/or only supports datagrams, the transport protocol should include extensive error detection and recovery.

The transport layer provides:

  • Message segmentation: accepts a message from the (session) layer above it, splits the message into smaller units (if not already small enough), and passes the smaller units down to the network layer. The transport layer at the destination station reassembles the message.
  • Message acknowledgment: provides reliable end-to-end message delivery with acknowledgments.
  • Message traffic control: tells the transmitting station to "back-off" when no message buffers are available.
  • Session multiplexing: multiplexes several message streams, or sessions onto one logical link and keeps track of which messages belong to which sessions (see session layer).

Typically, the transport layer can accept relatively large messages, but there are strict message size limits imposed by the network (or lower) layer. Consequently, the transport layer must break up the messages into smaller units, or frames, prepending a header to each frame.

The transport layer header information must then include control information, such as message start and message end flags, to enable the transport layer on the other end to recognize message boundaries. In addition, if the lower layers do not maintain sequence, the transport header must contain sequence information to enable the transport layer on the receiving end to get the pieces back together in the right order before handing the received message up to the layer above.

End-to-end layers

Unlike the lower "subnet" layers whose protocol is between immediately adjacent nodes, the transport layer and the layers above are true "source to destination" or end-to-end layers, and are not concerned with the details of the underlying communications facility. Transport layer software (and software above it) on the source station carries on a conversation with similar software on the destination station by using message headers and control messages.

Couche transport

Les protocoles de la couche de transport peuvent résoudre des problèmes comme la fiabilité des échanges (« est-ce que les données sont arrivées à destination ? ») et assurer que les données arrivent dans l'ordre correct. Dans la suite de protocoles TCP/IP, les protocoles de transport déterminent aussi à quelle application chaque paquet de données doit être délivré.

Les protocoles de routage dynamique qui se situent réellement dans cette couche de la pile TCP/IP (puisqu'ils fonctionnent au-dessus d'IP) sont généralement considérés comme faisant partie de la couche réseau. Exemple : OSPF (protocole IP numéro 89).

TCP (protocole IP numéro 6) est un protocole de transport « fiable », orienté connexion, qui fournit un flux d'octets fiable assurant l'arrivée des données sans altérations et dans l'ordre, avec retransmission en cas de perte, et élimination des données dupliquées. Il gère aussi les données « urgentes » qui doivent être traitées dans le désordre (même si techniquement, elles ne sont pas émises hors bande). TCP essaie de délivrer toutes les données correctement et en séquence - c'est son but et son principal avantage sur UDP, même si ça peut être un désavantage pour des applications de transfert ou de routage de flux en temps-réel, avec des taux de perte élevées au niveau de la couche réseau.

UDP (protocole IP numéro 17) est un protocole simple, sans connexion, « non fiable » - ce qui ne signifie pas qu'il est particulièrement peu fiable, mais qu'il ne vérifie pas que les paquets soient arrivés à destination, et ne garantit pas leur arrivée dans l'ordre. Si une application a besoin de ces garanties, elle doit les assurer elle-même, ou bien utiliser TCP. UDP est généralement utilisé par des applications de diffusion multimédia (audio et vidéo, etc.) pour lesquelles le temps requis par TCP pour gérer les retransmissions et l'ordonnancement des paquets n'est pas disponible, ou pour des applications basées sur des mécanismes simples de question/réponse comme les requêtes DNS, pour lesquelles le surcoût lié à l'établissement d'une connexion fiable serait disproportionné par rapport au besoin.

Aussi bien TCP qu'UDP sont utilisés par de nombreuses applications. Les applications situées à une quelconque adresse réseau se distinguent par leur numéro de port TCP ou UDP. Par convention, des ports bien connus sont associés avec certaines applications spécifiques.

RTP (Real Time Protocol) est un protocole fonctionnant avec UDP ou TCP, spécialisé dans le transport de données possédant des contraintes temps réel. Typiquement, il sert à transporter des vidéos pour que l'on puisse synchroniser la lecture des images et du son directement, sans les stocker préalablement.

SCTP (Stream Control Transmission Protocol) a été défini en 2000 dans la RFC 4960, et un texte d'introduction existe dans la RFC 3286. Il fournit des services similaires à TCP, assurant la fiabilité, la remise en ordre des séquences, et le contrôle de congestion. Alors que TCP est byte-oriented (orienté octets), SCTP gère des « frames » (courtes séquences). Une avancée majeure de SCTP est la possibilité de communications multi-cibles, où une des extrémités de la connexion est constituée de plusieurs adresses IP.

III. INTERNET

réseau (3)

The network layer controls the operation of the subnet, deciding which physical path the data should take based on network conditions, priority of service, and other factors. It provides:

  • Routing: routes frames among networks.
  • Subnet traffic control: routers (network layer intermediate systems) can instruct a sending station to "throttle back" its frame transmission when the router's buffer fills up.
  • Frame fragmentation: if it determines that a downstream router's maximum transmission unit (MTU) size is less than the frame size, a router can fragment a frame for transmission and re-assembly at the destination station.
  • Logical-physical address mapping: translates logical addresses, or names, into physical addresses.
  • Subnet usage accounting: has accounting functions to keep track of frames forwarded by subnet intermediate systems, to produce billing information.

Communications Subnet

The network layer software must build headers so that the network layer software residing in the subnet intermediate systems can recognize them and use them to route data to the destination address.

This layer relieves the upper layers of the need to know anything about the data transmission and intermediate switching technologies used to connect systems. It establishes, maintains and terminates connections across the intervening communications facility (one or several intermediate systems in the communication subnet).

In the network layer and the layers below, peer protocols exist between a node and its immediate neighbor, but the neighbor may be a node through which data is routed, not the destination station. The source and destination stations may be separated by many intermediate systems.

Couche réseau

Dans sa définition d'origine, la couche de réseau résout le problème de l'acheminement de paquets à travers un seul réseau. Exemples de protocoles de ce type : X.25, et le Initial Connection Protocol d'ARPANET.

Lorsque deux terminaux communiquent entre eux via ce protocole, aucun chemin pour le transfert des données n'est établi à l'avance : il est dit que le protocole est « non orienté connexion ». Par opposition, pour un système comme le réseau téléphonique commuté, le chemin par lequel va passer la voix (ou les données) est établi au commencement de la connexion : le protocole est « orienté connexion ». Avec l'avènement de la notion d'interconnexion de réseaux, des fonctions additionnelles ont été ajoutées à cette couche, et plus spécialement l'acheminement de données depuis un réseau source vers un réseau destinataire. Ceci implique généralement le routage des paquets à travers un réseau de réseaux, connu sous le nom d'Internet. Dans la suite de protocoles Internet, IP assure l'acheminement des paquets depuis une source vers une destination, et supporte aussi d'autres protocoles, comme ICMP (utilisé pour transférer des messages de diagnostic liés aux transmissions IP) et IGMP (utilisé pour gérer les données multicast). ICMP et IGMP sont situés au-dessus d'IP, mais assurent des fonctions de la couche réseau, ce qui illustre l'incompatibilité entre les modèles Internet et OSI.

La couche réseau IP peut transférer des données pour de nombreux protocoles de plus haut niveau. Ces protocoles sont identifiés par un numéro de protocole IP (IP Protocol Number) unique. ICMP et IGMP sont respectivement les protocoles 1 et 2.

II. ACCES

liaison (2)

The data link layer provides error-free transfer of data frames from one node to another over the physical layer, allowing layers above it to assume virtually error-free transmission over the link. To do this, the data link layer provides:

  • Link establishment and termination: establishes and terminates the logical link between two nodes.
  • Frame traffic control: tells the transmitting node to "back-off" when no frame buffers are available.
  • Frame sequencing: transmits/receives frames sequentially.
  • Frame acknowledgment: provides/expects frame acknowledgments. Detects and recovers from errors that occur in the physical layer by retransmitting non-acknowledged frames and handling duplicate frame receipt.
  • Frame delimiting: creates and recognizes frame boundaries.
  • Frame error checking: checks received frames for integrity.
  • Media access management: determines when the node "has the right" to use the physical medium.

Couche de liaison de données

La couche de liaison de données spécifie comment les paquets sont transportés sur la couche physique, et en particulier le tramage (i.e. les séquences de bits particulières qui marquent le début et la fin des paquets). Les en-têtes des trames Ethernet, par exemple, contiennent des champs qui indiquent à quelle(s) machine(s) du réseau un paquet est destiné. Exemples de protocoles de la couche de liaison de données : Ethernet, Wireless Ethernet, SLIP, Token Ring et ATM.

PPP (Point to Point Protocol) est un peu plus complexe, car il a été initialement spécifié pour fonctionner au-dessus d'un autre protocole de liaison de données

Cette couche est subdivisée en LLC et MAC par l'IEEE3.

physique (1)

The physical layer, the lowest layer of the OSI model, is concerned with the transmission and reception of the unstructured raw bit stream over a physical medium. It describes the electrical/optical, mechanical, and functional interfaces to the physical medium, and carries the signals for all of the higher layers. It provides:

  • Data encoding: modifies the simple digital signal pattern (1s and 0s) used by the PC to better accommodate the characteristics of the physical medium, and to aid in bit and frame synchronization. It determines:
  • What signal state represents a binary 1
  • How the receiving station knows when a "bit-time" starts
  • How the receiving station delimits a frame
  • Physical medium attachment, accommodating various possibilities in the medium:
  • Will an external transceiver (MAU) be used to connect to the medium?
  • How many pins do the connectors have and what is each pin used for?
  • Transmission technique: determines whether the encoded bits will be transmitted by baseband (digital) or broadband (analog) signaling.
  • Physical medium transmission: transmits bits as electrical or optical signals appropriate for the physical medium, and determines:
  • What physical medium options can be used
  • How many volts/db should be used to represent a given signal state, using a given physical medium

La couche physique décrit les caractéristiques physiques de la communication, comme les conventions à propos de la nature du média utilisé pour les communications (les câbles, les liens par fibre optique ou par radio), et tous les détails associés comme les connecteurs, les types de codage ou de modulation, le niveau des signaux, les longueurs d'ondes, la synchronisation et les distances maximales.

I. INFORMATION

Adressage contenu (0)

datamasse

  • collectée
  • stockée
  • cataloguée